【www.jyzhk.com--知识百科】

比例和比例尺的概念的整理和复习教案

  教学内容

  教科书第27页第1~3题,练习六第1~3题.

  教学目的

  1.回顾本单元的知识,进一步理解比和比例的意义及它们之间的区别,能较熟练地解比例.

  2.进一步理解成正、反比例的量的意义及它们之间的相同点及不同点,能正确判断两种相关联的量成什么比例.

  3.使学生再一次经历将一些实际问题抽象成代数问题的过程,体会事物之间的联系和区别;根据知识间的联系,渗透整理复习的方法.

  教具、学具准备

  自制多媒体课件.

  教学过程

  一、整理

  1.说一说你在本单元都学了哪些知识?

  让学生在小组内你一言我一语地说,对本单元的知识作一回顾,教师给足学生说的时间,再让每个小组派代表全班交流,教师随机把学生的发言(即各知识点)板书在黑板上.

  2.完成知识结构图.

  这些知识在我们的脑中比较零散,不便于记忆和运用,请大家用你认为好的方式对这些知识加以整理.分小组讨论整理.

  3.用实物展示屏进行展示交流.

  4.揭示课题:这节课复习前两部分的知识.

  二、复习

  1.下面式子中,哪个是比?哪个是比例?比和比例有什么区别?

  3∶8 4∶9=12∶27 7∶32=35∶10 0.25∶0.8

  2.比例的基本性质是什么?什么叫解比例?解下面的比例.

  ∶=x∶20    =

  =    3.9∶4=2.6∶x

  学生在练习本上练习,指名板演.学生练习后讲评.

  3.什么叫比例尺?怎么求图上距离?怎么求实际距离?

  课件出示:在一幅比例尺是1∶12000000的地图上,量得南昌与北京的距离是20.5厘米,北京与南昌的实际距离是多少千米?

  4.小山看一本《十万个为什么》.下表是每天看的页数与所需天数两种量相对应的数.

  每天看的页数 3 5 8 10

  所用的天数 40 24 15 12

  表中两种量中相对应的数有什么规律?这两种量叫什么量?它们之间是什么关系?

  5.课件出示:4个同学去买圆珠笔.下表是他们购买圆珠笔的枝数与总价两种量相对应的数.

  购买圆珠笔的枝数 2 3 5 8

  总价  0.50 0.75 1.25 2.00

  表中两种量中相对应的数有什么规律?这两种量叫什么量?它们之间是什么关系?

  6.说一说什么叫正比例关系?什么叫反比例关系?它们之间有什么联系和区别?

  梳理判断两种量是否成正(反)比例的思考步骤:

  (1)先找出三种量,其中两种相关联的量和一个定量;

  (2)根据两种相关联的量之间的数量关系,列出关系;

  (3)根据正(反)比例的意义,作出结论.

  三、分层练习,巩固提高

  1.填空.

  (1)妈妈用10元钱可以买3千克鸡蛋,总价与数量的比是( ),比值是( ).

  (2)汽车3小时行180千米,路程与时间的比是( ),比值是( ).

  (3)因为14∶21与0.8∶1.2的比值都等于( ),所以可以组成比例,( )∶( )=( )∶( ).

  (4)根据比例的基本性质,把6∶2=0.9∶0.3写成乘法形式是( )×( )=( )×( )

  (5)一幅设计图上注明的比例尺是:

  在这幅图上量得长8厘米的线表示实际( )米;图上表示实际距离400米的线段长( )厘米.

  (6)观察表中总价与本数的关系,并填空.

  数量(本) 2 3 5 6 8 9 10

  总价(元) 0.9 1.35 2.35

  2.选择正确答案的字母填入括号里.

  (1)时间一定,所行路程与速度( ).

  (2)正方体的体积和棱长( ).

  (3)全班人数一定,出勤率和出勤人数( ).

  (4)单价一定,总价与数量( ).

  (5)一篇文章的总字数一定,每行的字数与行数( ).

  A.成正比例关系 B.成反比例关系 C.不成比例

  3.判断下面各题中两个变量是否成比例,成什么比例.

  (1)xy=,x与y( )比例;x=,x与y( )比例.

  (2)3a=b,a与b( )比例;=,b与a( )比例.

  (3)x-y=18,x与y( )比例.

  4.独立练习.

  完成练习六第1~3题.

本文来源:https://www.jyzhk.com/zixun/11676/